$$
\left[\mathrm{Pt}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}
$$

Lock, C. J. L., Speranzini, R. A. \& Zvagulis, M. (1980). Acta Cryst. B36, 1789-1793.
Lock, C. J. L. \& Zvagulis, M. (1980). Acta Cryst. B36, 2140-2143.

Milburn, G. H. W. \& Truter, M. R. (1966). J. Chem. Soc. A, pp. 1609-1616.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1987). C43, 14-16

The Red-Violet Isomer of Dichlorobis[2-(m-tolyl)azopyridine]osmium(II)

By Anuradha Mukhopadhyay and Siddhartha Ray
X-ray Crystallography Laboratory, Department of Magnetism, Indian Association for the Cultivation of Science, Jadavpur, Calcutta - 700 032, India

(Received 20 February 1986; accepted 17 July 1986)

Abstract. $\left[\mathrm{OsCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3}\right)_{2}\right], M_{r}=655 \cdot 6$, triclinic, $P \overline{1}, a=8.593$ (7), $b=10.78(1), c=13.52(1) \AA, \alpha$ $=79.10(8), \quad \beta=91.69(7), \quad \gamma=78.74(7)^{\circ}, \quad V=$ $1203(2) \AA^{3}, \quad Z=2, \quad F(000)=636, \quad \lambda($ Mo $K \alpha)=$ $0.7107 \AA, \quad \mu=61.2 \mathrm{~cm}^{-1}, \quad D_{x}=1.81 \mathrm{~g} \mathrm{~cm}^{-3}, \quad R=$ 0.044 for 2884 observed [$I>3 \sigma(I)$] reflections. With respect to the pairs of $\mathrm{Cl}, \mathrm{N}(\mathrm{py})$ and $\mathrm{N}(\mathrm{azo})$ atoms coordinating with Os, the isomer has an octahedral cis-cis-cis configuration. Relative shortness of OsN (azo), 1.95 (1), 2.00 (1) \AA, compared to $\mathrm{Os}-\mathrm{N}(\mathrm{py})$, 2.02 (1), 2.05 (1) \AA, together with long $\mathrm{N}=\mathrm{N}$ distances, $1.28(1), 1.33(1) \AA$, indicate considerable π-backbonding power of the azo function.

Introduction. The azoimine chemistry of Os had remained a quite unexplored area until the synthesis, spectra and redox properties of dibromo- and dichloro-bis[2-(m-tolyl)azopyridinelosmium(II) were reported by Ghosh, Goswami \& Chakravorty (1983). Two isomers of the latter complex, blue-violet and red-violet in solution, have been isolated and characterized by spectral and chemical study. Dihalogenated metal complexes of 2 -arylazopyridine may, in principle, occur in five different octahedral configurations. The coordinating pairs of halogen, $\mathrm{N}(\mathrm{py})$ and $\mathrm{N}(\mathrm{azo})$ atoms may be arranged trans-trans-trans (ttt), trans-cis-cis (tcc), cis-trans-cis (ctc), cis-cis-trans (cct) or cis-ciscis ($c c c$). A structural study of the blue-violet isomer has already established its configuration to be ctc (Ghosh, Mukhopadhyay, Goswami, Ray \& Chakravorty, 1984). The results also indicated the presence of strong Os- N (azo) bonding, similar to the $\mathrm{Ru}-\mathrm{N}(\mathrm{azo})$ bonds in the 2-phenylazopyridine complexes of ruthenium (Seal \& Ray, 1984). The present work was undertaken to determine the configuration of the coordination octahedron in the red-violet isomer, as well as to look for evidence, if any, of superior π-backbonding power of the azo function in this complex.

0108-2701/87/010014-03\$01.50

Experimental. Specimen size $0.3 \times 0.2 \times 0.15 \mathrm{~mm}$. Nicolet Syntex R3 diffractometer, graphitemonochromated Mo $K \alpha$ radiation. 15 reflections (to $2 \theta=18.51^{\circ}$) for measurement of lattice parameters. D_{m} not measured since all suitable liquids available were solutions of bromides and iodides with which the crystal reacted; $\omega-2 \theta$ scans, $\theta_{\text {max }}=25^{\circ}, h 0$ to $10, k-12$ to $12, l-15$ to $15 ; 3946$ unique reflections measured (no merging of equivalents), 1062 with $I \leq 3 \sigma(I)$ considered unobserved; 012 and 131 used as standards, intensities showed no decay throughout data collection; no absorption correction; structure solved by Patterson and successive Fourier syntheses. Leastsquares refinement on F; atomic scattering factors and $f^{\prime}, f^{\prime \prime}$ for Os from International Tables for X-ray Crystallography (1974). Block diagonal approximation after the introduction of anisotropic thermal parameters. Towards the end of the refinement, the weighting scheme $\left[w=1 / \sigma^{2}(F)\right]$ was modified so as to reflect the trends in $|\Delta F|$, by adopting the following empirical values of $\sigma(F)$ (Seal \& Ray, 1981): for $\left|F_{o}\right| \leq 14.7, \sigma(F)=0.282 F_{o}$; for $14.7<\left|F_{o}\right| \leq 16.8$, $\sigma(F)=0.221 F_{o} ; \quad$ for $\quad 16.8<\left|F_{o}\right| \leq 18.6, \quad \sigma(F)=$ $0 \cdot 196 F_{o}$; for $18.6<\left|F_{o}\right| \leq 20 \cdot 6, \sigma(F)=0 \cdot 163 F_{o}$; for $20.6<\left|F_{o}\right| \leq 22.8, \sigma(F)=0.133 F_{o}$; for $22.8<\left|F_{o}\right| \leq$ $25.8, \sigma(F)=0.114 F_{o}$; for $25.8<\left|F_{o}\right| \leq 29.4, \sigma(F)$ $=0.091 F_{o}$; for $29.4<\left|F_{o}\right| \leq 34.2, \sigma(F)=0.077 F_{o}$; for $34.2<\left|F_{o}\right| \leq 44 \cdot 3, \sigma(F)=0.068 F_{o}$; for $\left|F_{o}\right|>44 \cdot 3$, $\sigma(F)=0.063 F_{o}$. Sixteen H atoms kept fixed at their calculated positions; those belonging to the two CH_{3} groups could not be located. Refinement converged [max. $(\Delta / \sigma)=0.459$] at $R=0.044, w R=0.051, S$ $=1.004$, for 2884 observed reflections. Final difference map showed max. and min. peaks of 0.8 and $-0.8 \mathrm{e} \AA^{-3}$. All calculations carried out on a Burroughs 6700 computer; XRAY ARC program system (World List of Crystallographic Computer Programs, 1973) locally adapted for the B6700. Program sequence NORMAL-EXFFT-SEARCH from the MULTAN78

[^0]package (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) used for weighted Fourier synthesis.

Discussion. The refined positional parameters are in Table $1,{ }^{*}$ and the distances and angles defining coordinating geometry in Table 2. A view of the molecule is shown in Fig. 1.

The complex has an octahedral ccc configuration. The coordination octahedron is greatly distorted,

> * Lists of structure factors, anisotropic thermal parameters, calculated H-atom coordinates, bond distances and angles in the ligands and equations of some mean planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43255 (30 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Final positional parameters for non-hydrogen atoms with standard deviations in parentheses and equivalent isotropic temperature factors $\left(\AA^{2}\right)$

$$
B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	x	y	z	$B_{\text {eq }}$
Os	0.24631 (7)	0.28163 (5)	$0 \cdot 33609$ (4)	$2 \cdot 5$
$\mathrm{Cl}(1)$	-0.0056 (4)	$0 \cdot 2561$ (3)	$0 \cdot 2745$ (2)	$3 \cdot 4$
$\mathrm{Cl}(2)$	$0 \cdot 1205$ (4)	0.4956 (3)	0.3479 (2)	$3 \cdot 3$
N(1)	$0 \cdot 182$ (1)	$0 \cdot 1986$ (9)	0.4740 (7)	$2 \cdot 8$
N(2)	0.448 (1)	0.3268 (9)	0.3858 (7)	$3 \cdot 1$
N(3)	0.327 (1)	0.097 (1)	0.3495 (7)	$3 \cdot 5$
N(4)	0.330 (1)	0.359 (1)	$0 \cdot 2078$ (7)	$3 \cdot 3$
N(5)	0.450 (1)	0.420 (1)	0.2134 (8)	$3 \cdot 8$
$N(6)$	0.292 (1)	0.0099 (9)	0.4186 (7)	3.4
C(1)	$0 \cdot 110$ (2)	0.255 (1)	0.5456 (9)	3.4
C(2)	0.064 (2)	0.187 (1)	0.6323 (9)	3.9
C(3)	0.087 (2)	0.055 (1)	0.644 (1)	$4 \cdot 2$
C(4)	0.163 (2)	-0.006 (1)	0.5761 (9)	3.9
C(5)	0.211 (2)	0.067 (1)	0.4892 (9)	3.6
C(6)	0.515 (2)	0.300 (1)	0.479 (1)	3.9
C(7)	$0 \cdot 647$ (2)	0.348 (1)	0.502 (1)	$4 \cdot 2$
C(8)	0.709 (2)	0.425 (2)	0.428 (1)	$4 \cdot 8$
C(9)	0.647 (2)	0.452 (1)	0.330 (1)	$4 \cdot 5$
C(10)	0.513 (1)	0.400 (1)	0.310 (1)	3.7
C(11)	0.268 (1)	0.376 (1)	0.1059 (8)	$3 \cdot 2$
C(12)	0.281 (2)	0.484 (1)	0.034 (1)	$4 \cdot 3$
C(13)	0.210 (2)	0.500 (2)	-0.059 (1)	$5 \cdot 5$
C(14)	$0 \cdot 132$ (2)	0.408 (2)	-0.083 (1)	$5 \cdot 7$
C(15)	0.121 (2)	0.300 (1)	-0.014 (1)	$4 \cdot 4$
C(16)	0.194 (1)	0.284 (1)	0.080 (1)	3.8
C(17)	$0 \cdot 37.4$ (2)	-0.068 (1)	0.245 (1)	4.4
C(18)	0.459 (2)	-0.123 (1)	0.171 (1)	$5 \cdot 6$
C(19)	0.577 (2)	-0.067 (2)	0.128 (I)	$6 \cdot 1$
C(20)	0.619 (2)	0.033 (2)	0.156 (1)	5.8
C(21)	0.541 (2)	0.090 (1)	0.229 (1)	4.3
C(22)	0.420 (2)	0.038 (1)	0.2715 (8)	3.4
C(23)	0.032 (2)	0.202 (2)	-0.039 (1)	7.2
C(24)	0.412 (3)	-0.238(2)	0.138 (2)	9.5

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in the coordination octahedron with e.s.d.'s in parentheses

$\mathrm{Os}-\mathrm{Cl}(1)$	$2.382(3)$	$\mathrm{Os}-\mathrm{N}(2)$	$2.019(9)$
$\mathrm{Os}-\mathrm{Cl}(2)$	$2.385(3)$	$\mathrm{Os}-\mathrm{N}(3)$	$1.95(1)$
$\mathrm{Os}-\mathrm{N}(1)$	$2.051(9)$	$\mathrm{Os}(4)$	$2.00(1)$
$\mathrm{Cl}(1)-\mathrm{Os}-\mathrm{Cl}(2)$	$87.3(1)$	$\mathrm{Cl}(2)-\mathrm{Os}-\mathrm{N}(4)$	$87.1(3)$
$\mathrm{Cl}(1)-\mathrm{Os}-\mathrm{N}(1)$	$84.8(3)$	$\mathrm{N}(1)-\mathrm{Os}-\mathrm{N}(2)$	$97.2(4)$
$\mathrm{Cl}(1)-\mathrm{Os}-\mathrm{N}(2)$	$172.9(3)$	$\mathrm{N}(1)-\mathrm{Os}-\mathrm{N}(3)$	$74.7(4)$
$\mathrm{Cl}(1)-\mathrm{Os}-\mathrm{N}(3)$	$89.7(3)$	$\mathrm{N}(1)-\mathrm{Os}-\mathrm{N}(4)$	$174.5(4)$
$\mathrm{Cl}(1)-\mathrm{Os}-\mathrm{N}(4)$	$100.6(3)$	$\mathrm{N}(2)-\mathrm{Os}-\mathrm{N}(3)$	$97.4(4)$
$\mathrm{Cl}(2)-\mathrm{Os}-\mathrm{N}(1)$	$94.5(3)$	$\mathrm{N}(2)-\mathrm{Os}-\mathrm{N}(4)$	$77.6(4)$
$\mathrm{Cl}(2)-\mathrm{Os}-\mathrm{N}(2)$	$85.8(3)$	$\mathrm{N}(3)-\mathrm{Os}-\mathrm{N}(4)$	$103.9(4)$
$\mathrm{Cl}(2)-\mathrm{Os}-\mathrm{N}(3)$	$168.9(3)$		

mainly due to the chelate bite angle $\sim 76^{\circ}$, as in the case of the ctc isomer (Ghosh et al., 1984).

Distances and angles in the chelate rings show a relatively long $\mathrm{N}-\mathrm{N}$ distance [average $1.30 \AA$, compared, for example, to an average of $1.256 \AA$ in the structure of 1-phenylazoacetaldehyde oxime (Roy \& Sengupta, 1980)], and short Os-N(azo) bonds compared to the $\mathrm{Os}-\mathrm{N}(\mathrm{py})$ bonds. A similar effect was also observed in the ctc isomer (Fig. 2). It is therefore reasonable to conclude that the inference made regarding the nature of the coordination in the ctc isomer, namely the major involvement of the azo function in π bonding which makes the net ($\sigma+\pi$) bond order of $\mathrm{Os}-\mathrm{N}(\mathrm{azo})$ larger, is valid also for the $c c c$ isomer.

Fig. 1. The asymmetric unit of the structure viewed along a.

Fig. 2. Average distances (\AA) and angles in the chelate rings of the ccc title complex and of the ctc isomer.

The authors are grateful to Professor A. Chakravorty of the Department of Inorganic Chemistry, IACS, for providing suitable crystals for this investigation and stimulating discussions, and to Dr N . A. Bailley of the Department of Chemistry, University of Sheffield, for kindly collecting the intensity data. One of the authors (AM) acknowledges the grant of a fellowship from the Council of Scientific and Industrial Research, Government of India.

References

Ghosh, B. K., Goswami, S. \& Chakravorty, A. (1983). Inorg. Chem. 22, 3358-3360.

Ghosh, B. K., Mukhopadhyay, A., Goswami, S., Ray, S. \& Chakravorty, A. (1984). Inorg. Chem. 23, 4633-4639.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Roy, T. \& Sengupta, S. P. (1980). Cryst. Struct. Commun. 9, 965-971.
Seal, A. \& Ray, S. (1981). Indian J. Phys. 55A, 414-416.
Seal, A. \& Ray, S. (1984). Acta Cryst. C40, 929-932.
World List of Crystallographic Computer Programs (1973). J. Appl. Cryst. 6, 309-346.

Acta Cryst. (1987). C43, 16-18

The Structure of Potassium Dihydroxyacetate (I) and Rubidium Dihydroxyacetate (II)

By T. Lis
Instytut Chemii, Uniwersytet, 50-383 Wroclaw, Poland

(Received 14 March 1986; accepted 25 July 1986)

Abstract

I) $\mathrm{K}^{+} . \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{4}^{-}, M_{r}=130 \cdot 1$, monoclinic, $P c$, $a=5.791$ (4), $b=7.727$ (6), $c=11.445$ (6) $\AA, \quad \beta=$ $120.00(4)^{\circ}, \quad V=443.5 \AA^{3}, \quad Z=4, \quad D_{m}=1.92, \quad D_{x}$ $=1.95 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu(\mathrm{Mo} \mathrm{Ka}, \quad \lambda=0.71069 \AA)=$ $1.08 \mathrm{~mm}^{-1}, \quad F(000)=264, T=295(2) \mathrm{K}$, final $R=$ 0.036 for 2203 data including both $h k l$ and $\bar{h} \overline{k l}$ reflexions. (II) $\mathrm{Rb}^{+} . \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{4}^{-}, M_{r}=176 \cdot 5$, monoclinic, $P 2_{1} / c, a=5.665$ (6), $b=12.846$ (9), $c=6.391$ (7) \AA, $\beta=96.03(7)^{\circ}, V=462.5 \AA^{3}, Z=4, D_{m}=2.52, D_{x}$ $=2.53 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu(\mathrm{Mo} K \alpha)=11.2 \mathrm{~mm}^{-1}, \quad F(000)=$ 336, $T=300$ (1) K, final $R=0.037$ for 1239 non-zero reflexions. The X-ray analysis showed that potassium and rubidium glyoxylate crystallized from aqueous solutions exist in the solid state as salts of dihydroxyacetic acid. In the dihydroxyacetate anions different conformations about the $\mathrm{C}-\mathrm{C}$ bond are observed. All O -bonded H atoms are involved in hydrogen bonds.

Introduction. In the biochemical literature glyoxylic acid is presented mostly as the simplest aldehydoacid, $\mathrm{CHO}-\mathrm{COOH}$. However, X-ray analysis (Lis, 1983) has shown that glyoxylic acid crystallizes from water as dihydroxyacetic acid $\mathrm{CH}(\mathrm{OH})_{2} \mathrm{COOH}$. A similar result has been reported by Mattes \& Uckelmann (1981) for the Na salt of this acid. Here are reported the crystal structures of potassium and rubidium salts of this acid.

Experimental. Potassium (rubidium) dihydroxyacetate was prepared by combining an equivalent quantity of glyoxylic acid monohydrate (Ferak Berlin) and

0108-2701/87/010016-03\$01.50
potassium (rubidium) carbonate in water. After slow evaporation of water many-faced, often twinned, crystals of (I) [rather irregular shaped crystals of (II)] appeared. D_{m} measured pycnometrically in 1,2-dibromoethane $/ \mathrm{CCl}_{4}$ for (I) and in 1,2-dibromoethane/ CHBr_{3} for (II). Systematic absences on Weissenberg photographs uniquely indicated the space group for (II). For (I) the possible groups were $P c$ and $P 2 / c$. Specimens $0.2 \times 0.25 \times 0.3 \mathrm{~mm}$ for (I) and $0.4 \times$ $0.3 \times 0.4 \mathrm{~mm}$ for (II) were cut from large crystals. Syntex $P 2_{1}$ diffractometer, Mo $K \alpha$ radiation for lattice parameters [15 reflexions, $20 \leq 2 \theta \leq 28^{\circ}$ for (I) and $15 \leq 2 \theta \leq 34^{\circ}$ for (II)] and intensity measurements; $2 \theta-\omega$ scan technique. 2484 unique intensities below $\theta=30^{\circ}$ for (I) $(h 0 \rightarrow 8, k-10 \rightarrow 10, l-15 \rightarrow 13) ; 3051$ reflexions below $\theta=32.5^{\circ}$ for (II) ($h 0 \rightarrow 8, k-19 \rightarrow 19$, $l-9 \rightarrow 9$). After each group of 50 reflexions two standards were measured, variation $\pm 5 \%$. Most calculations performed on a Nova 1200 computer with locally modified XTL/XTLE (Syntex, 1976) programs. Neutral-atom scattering factors from International Tables for X-ray Crystallography (1974); real and imaginary components of anomalous dispersion included for all non-H atoms. Both structures solved by the heavy-atom method. The $\mathrm{K}(\mathrm{Rb})$ atoms were found from a Patterson map. In the case of (I) the noncentrosymmetric space group $P c$ was assumed. All other atoms were found from difference maps. In each structure, refinement based on $F(\mathrm{~K}, \mathrm{Rb}, \mathrm{O}, \mathrm{C}$ anisotropic, H isotropic) for reflexions with $I>$ © 1987 International Union of Crystallography

[^0]: © 1987 International Union of Crystallography

